Materials Science II - 2010, Cera	Materials Science & Technology		
Mechanical Properties of Ceramics or Mechanical Behavior of Brittle Materials			
Jakob Kübler & Empa, Science & Technology Lab for High Performance Ceramics Überlandstrasse 129, CH-8600 Dübendorf +41-44-823 4223 jakob.kuebler@empa.ch	& Prof. L.J. Gauckler ETH Zürich, Materials Department		
Kübler Empa-HPC, ETHZ MW-II Ceramics-6.3, 2010	1		

	Repetition learning targets part 2			
What you already know and understand!				
 Fracture toughness can be enhanced by increasing energy required to extend crack. 				
 Ceramics with R-curve behavior: degradation in strength with increasing flaw size is less severe reliability increases 				
 Crack deflection, crack bridging, martensitic transformation are mechanisms that enhance K_{Ic app}. 				
 Fracture toughness values measured with different test methods may differ. 				
Bend test:	 universal (e.g. strength, fracture toughness) sensitive to surface defects only small volume tested value σ_{3Pt} test > value σ_{4PT} test specimen sees stress gradient 			
Kübler Empa-HPC, ETHZ MW-II C	Deramics-6.3, 2010	2		

Crack tip	1. 2. 3. 4.	Introduction Stresses at a crack t Griffith law K _I and K _{Ic}	"Why mechanical testing ip "Higher than you'd assume "Conditions for failure "Stress intensity & critical stress intensity	77 77 77 77	learning targets 1
part z Strength	5. 6. 7.	R-curve Properties Strength	"Improving toughness "Knowing what you measure "Just a value	33 33	learning targets 2
paת 3 Statistics	8. 9. 10.	Statistic Proof testing Fractography	"Weibull, a name you'll never should forget "Make it or "Reading fracture surfaces	,, ,, ,,	learning targets 3
part 4 ie&Temp	11. 12. 13. 14.	Thermal shock Slow crack growth SPT diagrams Creep	"Temperature, time and geometry "After several years "Combining strength, lifetime & statistics "Temperature makes it move	33 33 33 33	learning taraets 4

	(1) why ?
"Improvement thro (cause o	bugh feedback." f failure)
Question (reason)	Answer for (application)
Where did it break from?	Engineering
Did it crack suddenly or slowly?	Engineering
Why did it break form here?	QA, process monitoring
Nature of fracture source?	Material development, QA
Stress at fracture?	Design
Environment or fatigue?	Engineering
Good test?	Material evaluation
Whose fault?	Commercial, legal

Kübler Empa-HPC, ETHZ MW-II Ceramics-6.3, 2010

24

Fractography (3)				
old but not well known science				
First mention of ceramic fractures by E. Bourry in: A treatise on ceramic industries (first English editon 1901)				
" observation of the structure or homogeneity should consist of the examination of a fracture, either by the naked eye or by a magnifying glass."				
 " it will be advisable to note: (a) appearance of the fracture, whether granulated, rough or smooth, or with a conchoidal surface. (b) size of the grains (c) homogeneity, whether there are any planes of cleavage or scaling, and whether these are numerous and pronounced" 				
 Guide for hobby astronomer get familiar with the firmament simply by the naked eye and a map observe satellites and stars with a simple field glass locate and enjoy details of far away stars and galaxies with a telescope 				
Kübler Empa-HPC, ETHZ MW-II Ceramics-6.3,2010 26				

Learning targets part 3				
Reading fracture surfaces				
 Increasing the level of information of a fracture by starting from its history. 				
 Fracture patterns will lead you to the origin zone. 				
 Macro- and micro-features point towards the origin. 				
 Fracture mechanics and fractography combined are strong tools to develop materials optimize procedures and processes construct components improve machining design systems 				
Guide for fractographer				
• get familiar with the failure and its "environment" simply by the naked eye and a map				
• observe large markings and features with a simple optical microscope				
• locate and understand small details with a SEM				
bler Empa-HPC, ETHZ MW-II Ceramics-6.3, 2010	38			